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Abstract
This article is on International Young Physicist’s Tournament (IYPT) 2018 (see http://iypt.org/Home) problem number

three, Dancing Coin. The task statement as issued by the IYPT-commission reads as follows: Take a strongly cooled bottle
and put a coin on its neck. Over time you will hear a noise and see movements of the coin. Explain this phenomenon and
investigate how the relevant parameters affect the dance. A theoretical model is presented by which the heat flows into the
system can be modelled in order to predict the change in pressure in the bottle. This allows to predict the most important
entity involved in the phenomenon, namely the critical pressure at which a lift-off can occur, as well as other dynamic processes
involved. In a next step, a possible explanation for the occurrence of the sound is given. Finally, the model quality is evaluated
in the light of measured data.
The determining parameter when considering the movement of the coin that has been found during research is coin mass as it
affects the pressure dynamics of the system the most. The sound phenomenon, on the other hand, can not be explained to full
satisfaction as a result of the resonance of the bottle and the damping of natural frequencies of the coin.

1 Qualitative description

We consider the bottle - i.e. the bottle wall as well as the
air that is sealed within it through the coin on top of the
bottle neck - to be our system of concern. After cooling, a
little water is added to the top of the bottle in order to seal
the system when the coin is put on the bottle neck (with-
out the water, no sealing of the system could be observed).
At this point, the temperature within the bottle Ti is sig-
nificantly lower than the ambient temperature Ta. At time
t = 0, which is considered to be the moment the system is
sealed, the pressure p within the system is equivalent to the
ambient pressure and is depicted as p0. There is a number of
n air particles in the system. The temperature gradient1 ~∇T
created by the temperature difference between Ti and Ta di-
rects the flow of heat into the system according to Fourier’s
law of heat transfer2. Thus, an increase in temperature of
+∆T occurs within the system. This increases the pressure
by +∆p. As heat continues to flow into the system (at a
slower rate with decreasing temperature difference), eventu-
ally a critical temperature increase +∆Tcrit and along with
it a critical pressure increase +∆pcrit is reached. At this
point, the pressure within the bottle is enough to lift the
coin, temporarily unsealing the system. This lift-off results

1Column vector whose entries are the partial derivatives of the cor-
responding function with respect to the space directions x, y and

z, i.e. ~∇T =
(

∂T
∂x

∂T
∂y

∂T
∂z

)T

2Heat flux ~q ([q] = J
m2 ) is equivalent to −λ~∇T where λ is the thermal

conductivity, a tensor material property

in a sudden drop in pressure of precisely the critical pressure
difference in a proper lift-off back to ambient pressure as well
as a decrease of −∆n air particles in the system due to the
pressure adjustment of the system. This means that over
time, there will be a net loss of air particles in the system,
which makes sense as the cool air is denser at time t = 0. As
the lift-off terminates, the coin comes crashing back onto the
bottle neck and a sound can be perceived. In perfect exper-
imental conditions, the system seals itself again as soon as
the coin is back on the bottle neck, and the temperature in
the system, which increases continuously with time, creates
again a pressure difference that builds up to the critical tem-
perature difference, eventually resulting in another lift-off.
This process repeats until the pressure difference that can
be reached is lower than the critical temperature difference,
which depends on the difference in temperatures between the
system and the (constant) ambient temperature.

2 Theoretical model

2.1 Temperature evolution

First consider the flow of heat into the system. A good ap-
proximation is given by Newton’s law of cooling, which says
that the rate of change of temperature3 Ṫ is proportional to
the temperature difference ∆T , i.e.

3Ṫ = dT
dt
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Ṫ = −k
(
T (t)− Ta

)
(2.1)

The general solution to this first-order differential equation is
T (t) = ±A ·e−kt+Ta, where, in our case, A = |Ta−Ti|. The
idea is to predict the warming coefficient k that is dependant
on material properties. To do this, we use the notion that
the heat flow rate Q̇ = I is given by

Q̇ = I = ∆T

n∑
i=1

Ui · Si (2.2)

where U is the thermal transmittance and S is the interaction
surface area. We can see from this that we consider several
parallel heat flows into the system - one through the coin and
one through the bottle wall. The corresponding heat flows
have different thermal resistances Ψ that are given through
material properties and states of convection and other exter-
nal conditions. Note that thermal transmittance is Ψ−1. In
addition to equation (2.2), we need the following equation:

Q̇ = Ṫ ·
n∑
i=1

ci ·mi (2.3)

which allows the computation of k according to

k =

∑n
i=1 Ui · Si∑n
i=1 ci ·mi

(2.4)

where

n∑
i=1

Ui · Si =

n∑
i=1

Si
Ψi

=

 Ab
1
αeb

+ db
λb

+ 1
αbi

+
Ac

1
αec

+ dc
λc

+ 1
αci

 (2.5)

where Ab is the bottle surface, Ac is the coin surface, αeb is
the heat transfer coefficient from exterior air to the bottle
(dependant on state of convection), db the thickness of the
bottle wall, λb the thermal conductivity of the bottle wall
material and αbi the heat transfer coefficient from bottle
wall to the interior air of the system (Kammer and Mge-
ladze, 2014). Similarly, the denominator in equation (2.5) is
composed of the same coefficients for the coin and therefore
with different values. As there are no precise values of these
coefficients in literature, and measuring them would require
advanced experimental skill, the warming coefficient k was
fitted to data of temperature evolution. It can, however, be
concluded from equation (2.5) what the determining factors
in the rate of change of temperature in the system must be.

Note that we do not consider radiation, because at a temper-
ature difference of 40K, the absorbed radiation power is less
than one percent of the absorbed conductive power, which
makes radiation negligible.

2.2 Equation of state for lift-offs

Treating the air in the system as being an ideal gas, it is pos-
sible to formulate an equation of state when a lift-off occurs.
The ideal gas law is pV = nRT , where p is pressure, V is
volume, n is number of particles, R is the ideal gas constant
and T is the absolute temperature. Rewriting this equation,
we obtain

amc + 4πrσ

A′c
=

ρ

M
R∆Tcrit (2.6)

where the left side of the equation depicts the force required
to lift the coin, which is precisely a pressure factor4 a times
the coin mass mc, to which the surface tension force5 4πrσ
has to be added and the sum of the two divided by the coin-
system interaction area A′c. This is equivalent to the right
side where ρM−1 is number of molecules divided by bottle
volume (number of molecules can be expressed as density ρ
times volume V divided by molar mass M , but V occurs on
both sides of the equation, it cancels out) times the ideal gas
constant R times the critical temperature difference required
for a lift-off ∆Tcrit. From the equation of state (equation
(2.6)), the pressure difference required for a lift off ∆p in
dependency of the coin mass m can be derived according
to

∆p =
amcg + 4πrσ

Ac
(2.7)

2.3 Discrete lift-off model

We now seek to predict the evolution of the time it takes be-
tween two subsequent lift-offs. For this, we must consider the
following discrete equations. First consider how air density
develops between two lift-offs. The initial air density in the
bottle is given by the coefficient of volume expansion γ and
the initial absolute temperature difference ∆Ti (i.e. the dif-
ference between the onset temperature of the measurement
and the temperature pertaining to ρi).

4This factor a is needed due to possible pressure inhomogeneities in
the system that will cause the force enacted be p ~A′c, where ~A′c is
the normal vector of the interaction area between the air in the
system and the surface of the coin, to affect the coin off its pivot.
Therefore, factor a is introduced with a ∈ (0.5; 1)

5σ is the surface tension of water, r the radius if the interaction area
A′c and factor 4 is created because we consider surface tension to
affect both the inner sealing of the system and the outer sealing,
which creates to circles of water beneath the coin with very nearly
the same radius r, therefore the entire length affected by surface
tension is 2 · 2πr = 4πr
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ρn = ρ0
1

1 + γ
(
∆Ti +

∑n
i=1 ∆Tn

)
ρ0 = ρi

1

1 + γ∆Ti
(2.8a)

Given the initial air density ρ0, the subsequent values for
air density at the n-th lift off are calculated in dependency
of the temperature differences required for the next lift-off
to occur. This ∆Tn is precisely corresponding to ∆Tcrit,
which itself is changing with time. We use the equation of
state presented in equation (2.6) to predict the value of the
initial lift-off temperature difference (i.e. the temperature
difference required for the first lift-off to occur, i.e. when the
absolute temperature T is T = Ti + ∆T1):

∆Tn =
(amcg + 2πrσ)VB

AcnnR

∆T0 =
(amcg + 2πrσ)VB

Acn0R
(2.8b)

It can be seen that the temperature difference is dependant
on the number of air particles in the system. This number
can be determined using the following identities:

nn =
ρnVb
M

with n0 =
ρ0Vb
M

(2.8c)

Above, number of particles n is expressed as mass over molar
mass. Mass can be expressed as density times volume, which
creates a relationship between equations (2.8a) and (2.8c),
and couples equations (2.8a), (2.8b) and (2.8c). The last
prediction that can be made using the discrete model is to
inverse Newton’s law of cooling presented in equation (2.1)
to predict the time steps between subsequent lift offs:

∆tn =
−1

k
ln

(
Ti +

(∑n
i=1 ∆Ti

)
− Ta

A

)

∆t0 =
−1

k
ln

(
T0 − TA

A

)
(2.8d)

With this, let us now consider the theoretical aspects of the
sound in the task.

2.4 Sound model

At first it may seem improbable to accurately predict the
source of the sound of the phenomenon, or its frequency.
Keep in mind that the sources of the sound may be the bot-
tle material oscillating, the coin oscillating, or the air in the

bottle much like a Helmholtz resonator6. First consider the
bottle material oscillating. In a simplified approach, it can
safely be assumed that the bottle neck only resonates and
the change in bottle geometry as soon as there is a signifi-
cant change in curvature of the bottle (which occurs, as soon
as the bottle neck ends) will dampen out any sound waves
going beyond this point. If only the bottle neck resonates,
it can be stated that there are two possible ground modes of
resonance: one closed-end ground model and one open-end
ground mode. Former has two nodes of the sound waves -
one at either end of the bottle neck. The latter has one node
at the end where the bottle neck curves into the body of the
bottle and an antinode at the opening of the bottle neck.
Closed end-resonance is likely not to occur because the bot-
tle can more easily oscillate in the open-end configuration.
This is shown in figure 1, where h gives the length of the
bottle neck. The length of the bottle neck can be expressed
as

h =
λ0

4
=

3λ1

4
(2.9)

Interior Exterior

h

Figure 1: Open-end modes of resonance. The blue area shows the
zone in which the curvature of the bottle leads to perturbations
of sound waves travelling along the bottle neck

Using the identity of f = c
λ
, where f is frequency, c is speed

of sound and λ is wavelength, the following progression can
be formulated which describes the upper modes of the open-
end resonance in dependency of the ground mode:

fn = (2n+ 1)f0 f0 =
c

4h
(2.10)

The modes for the coin resonance (both free- and clamped
edge) can be found in literature, i.e. in Fletcher and Rossing,
1991. With this, the Helmholtz resonance remains. The
Helmholtz resonance frequency is given by

6A body of air oscillating at a particular frequency due to pressure
discrepancies
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fH =
c

2π

√
A

lV
c =

√
k
RT

M
(2.11)

where c is the speed of sound, A is the cross-sectional area
of the bottle neck opening, l is its length and V the vol-
ume of the entire bottle, k is the heat capacity ratio, R the
ideal gas constant, T temperature and M molar mass. It
can be concluded, thus, that the speed of sound in air de-
pends highly on temperature. Comparing, for instance, the
Helmholtz frequencies at −10◦C and at 20◦C yields that

f−10◦C ≈ 0.944f20◦C (2.12)

3 Experimental setup

Bottle	
temperature

Ambient	
temperature	
sensor

Absolute	
pressure	
sensor

Pressure	
difference	
sensor

Coin

Putty	
tightening

Figure 2: Experimental setup. The tightening ring was latter
omitted as it proofed to be redundant in later cap versions.

The experimental setup used constituted itself of several bot-
tles of different materials and surface properties, all of whom
influence the rate of change of temperature according to
equation (2.5). Furthermore, a set of coins was investigated.
Attention was paid to strict adherence to the task statement
in that only coins in the sense of coins used for monetary
purposes were used. This makes the experiment more dif-
ficult because these coins exhibit a rough surface, thereby
considerably increasing the chance of a leak occurring in the
tightening of the system, thereby destroying the experiment.
In order to keep the interaction are between coin and the
air in the system constant, a cap construction (visible as
the blue piece in figure 2) was 3D-printed. This makes data
more comparable. It, however, makes experimenting more
challenging as well because there can more easily be a leak
in the tightening. As can be gathered from figure 2, ambient
temperature, system pressure and system temperature was
measured. Ambient pressure was measured once before the
onset of the system measurement. During experiment, atten-
tion was paid to keeping external factors constant, i.e. not

opening windows to change ambient temperature or to cre-
ate breeze, both of which have an impact on equation (2.5).
It is clear, also, that the temperature is not homogeneous
in the system due to the parallel flows of heat according to
equation (2.5). This was not accounted for, but could the-
oretically by applying Fourier’s law of heat transfer. The
temperature sensors are accurate within an uncertainty of
±0.5◦C, and the pressure sensors within an uncertainty of
±2%.

4 Data

Figure 3: Optimal data. Particularly interesting is a data pattern
precisely as suggested by the qualitative model.
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(a) Black metal bottle temperature evolution
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(b) Shiny metal bottle temperature evolution

Figure 4: Comparison between fitted and model predictions and
data. The model values needed for equation (2.5) where taken
from literature - the most accurate values that could be found.

In figure 3, it can be seen that the pressure evolution adheres
to the qualitative model in that it builds up until it reaches
a critical pressure, after which it drops again.
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In figure 4, a comparison between the fit and the model be-
comes obvious in temperature data. It furthermore is inter-
esting that the black bottle shows a faster change in temper-
ature, which is reasonable due to its surface being more alike
to a black body radiator than the shiny metal bottle.

Figure 5: Lift-off pressure with changing coin mass. The black
crosses are all the measured data points, the red dots give the peak
of the standard distribution curves with the error bars pertaining
to the standard deviations of the data points. The red line is
the fit through the normal distribution peaks, giving a value of
a = 0.67. The upper boundary of the (blue) prediction range is
derived with a = 1 and the lower with a = 0.5

Note that figure 5 gives an experimental value of a = 0.67.
This value is used in further predictions:

Figure 6: The prediction range is established using a = 0.67 es-
tablished in figure 5. The upper prediction bound is still a = 1
because when changing the ratio between coin radius and interac-
tion area radius, it may be that this factor a changes. The bottle
used in this experiment was a small glass bottle and the coin used
was a Swiss 2-franc-coin.

With this, turn your attention now to the sound model. Fig-
ure 7 shows the predictions made from the simplified open-
end neck resonance model. In figure 8, a possible explanation
of the minor peaks is presented as a result of upper modes of
the Helmholtz resonance frequencies of the bottle. It shows
the same coin and the same bottle at different temperatures.
Note that the black line in the upper plot is at 1848 Hz and
the one in the lower at 1727 Hz. The ratio of those two fre-
quencies is f−10◦C

f20◦C
= 0.934. Comparing this value to the

predicted ratio value of the Helmholtz resonances according
to equation (2.12), this data is evidence that the theory to ex-
plain the minor peaks may be holding, especially given that
the deviation between theory and data is less than 1%.
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Figure 7: The peaks of the sound spectra superimpose perfectly
with the predicted ground mode frequencies of the open-end neck
resonance ground mode (black lines in the spectra). Data was
taken from ten different coins. From top to bottom, the coins are:
1 Euro, 0.2 AUD, 0.2 CHF, 1 CHF, 2 CHF, 5 CHF, 2 Euro, 0.1
NZD, 0.5 NZD, 0.2 SGPD.

Figure 8: Possible explanations of minor peaks due to
temperature-dependant shifts of upper mode-frequencies of
Helmholtz resonance. [PSD]=dBHz−1
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5 Interpretation and discussion

The experimental setup used in this experiment overall gave
satisfactory results: it was possible to monitor the relevant
physical entities relatively easily using the cap construction
outlined in section 3 Experimental setup. The approach to
fitting all the relevant measuring devices into a single cap
construction allowed for a high efficiency and degree of or-
ganisation. However, there were some drawbacks to the de-
sign as well. Firstly and foremostly, the cap construction
was prone to air leaks, which would disable accurate mea-
surement. Secondly, it was time-intensive to design, print
and set up and lastly, it only proofed to be effective in a cer-
tain range of coins, which, however, may have to do with the
mechanics of the coin motion as well. This will be discussed
at a later stage.

The temperature prediction using Newton’s law of cooling
gives an outlook over the relevant parameters that impact
the temperature evolution with a high degree of certitude.
However, the fact that the evolution cannot be modelled ac-
curately using literature values limits the predictive power
of the model. While the approach of fitting the temperature
curve and then using the fitted value gives a good result,
it leaves a bit to be desired in terms of model goodness.
Furthermore, Newton’s law of cooling only predicts the evo-
lution of temperature in the time-domain, while more funda-
mental equations of heat flow such as Fourier’s law of heat
transfer would give an overview over the temperature change
in both space- and the time-domain. The latter may have
given an indication of how temperature fluctuations impact
the pressure fluctuations in the bottle, which ultimately may
impose limitations on the factor a. Then again, this would
perhaps may not be worth the effort as measuring such phys-
ical quantities may provide a great challenge, and on top of
it, the approach using Newton’s law of cooling gives a good
result.

The prediction of the critical lift-off-pressure in dependency
of the coin mass uses the equations presented in the theoret-
ical model. Firstly, it needs to be said that all the values are
within the prediction boundaries. There are some larger fluc-
tuations off the statistical mean especially in heavier coins,
which may have the following explanation: as the pressure
increases, the air eventually is forced out of the bottle. How-
ever, the pressure needs to compensate both the surface ten-
sion force of the water as well as the coin weight. The „way of
least resistance“ for the air is to overcome the surface tension
of the water, rather than lifting the coin. Therefore, not the
entire pressure predicted by theory will build up. Likewise,
there may be higher pressures if the forces to be overcome
are larger than surface tension and weight. Reasons for this
may be that the water is not evenly distributed on the cap
or surface texture effects of the coins. The statistical anal-
ysis to determine factor a leaves a relatively large range of
prediction. This is visible in figure 5, but especially in fig-
ure 6. In figure 5, there is a visible tendency that standard
deviations increase with increasing coin mass in data. The

problems outlined above may be the reason for this. In figure
6, the range of prediction becomes very large with increasing
number of lift-offs. This is problematic as the coherence of
data and theory may not be interpreted unambiguously. In-
teresting in particular is that until about the 30th lift-off, the
prediction that is based on the value of a that was found in
the statistical analysis based on figure 5, seems to adequately
predict the behaviour. However, there seems to be a devia-
tion as soon as the number of lift-offs becomes greater. The
reason for this behaviour is not very clear. With increasing
number of lift-offs, the temperature in the system increases
gradually towards ambient temperature. Consequently, it
will take longer for the subsequent lift-off to occur (which
is precisely shown in the model). However, with increasing
time interval, it may be that once again the pressure will
find the water tightening to offer less resistance than lifting
the coin would. As overcoming surface tension forces requires
less pressure, less time would be required to lead to a drop in
pressure, which was the physical process actually measured
to determine the time of a lift-off-event. This explanation,
however, does not explain why this phenomenon is not ob-
served in prior lift-offs. The explanation to this should be
subject to further research.

Considering the sound model, the approach via the modes of
resonance is rather promising. However, there is a number of
factors that have a massive impact on the Eigenfrequencies
of the bottle, foremostly its geometry. Thus, given a distinct
bottle shape where perturbations most likely can occur at
a particular zone between bottle neck and bottle body, the
approach using the open-end resonance modes may produce
good predictions. As soon, however, as the geometry of the
bottle is such that the transition zone between neck and body
is not easily distinguishable, the simplified approach using
the Eigenfrequencies becomes insufficient. This is therefore
a limitation to the predictive power of the model. Interest-
ing in particular is that the frequency peaks of the spectra
nicely correlate with data. This is strong evidence that the
explanation of the main peaks using the approach with the
Eigenfrequencies described above holds at least for the bot-
tle using during experiment - one, where the transition zone
between neck and body is very clear. No clear statement,
however, can be given when considering different bottles,
even though their main peaks should also correlate to an
Eigenfrequency. Their value is the issue, as it cannot easily
be determined in more complex geometries. Note that the
model does not consider the coin to oscillate. The reason for
this is quite palpable: Oscillations of the coin could occur
at the moment the coin comes crashing back onto the bottle
neck. As it then generally flatly lies on the latter, and is
furthermore in contact with the sealing water, it is assumed
that any oscillations of the coin would be damped. Once
again, therefore, does the explanation of the major peaks in
the frequency spectra hold.
Modelling the minor peaks has proofed fairly difficult. With
a high degree of certitude, there are some higher modes of
resonance of the bottle and perhaps even of the coin that
can be perceived apart from the main peak explained above.
Another approach is an explanation using Helmholtz reso-
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nance. This approach is justified by the fact that a number
of air molecules leave the bottle, thereby possibly creating
the pressure difference necessary for a Helmholtz oscillation
phenomenon to occur. A part of the theory is strongly re-
flected in data, namely the really good correlation of the
frequency ratios at varying temperature. This being said,
it is not clear how exactly these frequencies are to be inter-
preted: they are assumed to be higher modes of Helmholtz
resonance. It is neither clear, however, if they exist, and if
yes, how they arise. Regardless of whether or not it is up-
per modes of Helmholtz resonance that cause some of the
minor peaks, the very accurate prediction of the Helmholtz
resonance frequency ratio and the frequency ratio of minor
peaks in data strongly suggests that at least part of the minor
peaks in the spectra are the result of a form of air oscilla-
tion. The temperature-dependent differences in the speed
of sound of air, therefore, perhaps form the basis of a more
holistic approach to explaining the perceived sound.

6 Conclusion and Acknowledgements

The task has been to take a strongly cooled bottle and to put
a coin on its neck, and then to explain the subsequent lifting-
like motion of the coin and the sound that follows it, as well
as to investigate the relevant parameters. Given that a tem-
perature difference of 40 K is considered significant enough,
the lifting of the coin was found to be due to pressure dy-
namics in the system. The sound, on the other hand, cannot
be fully explained, even though some promising approaches
are presented. The relevant parameters, witch are coin mass,
the presence of absence of water tightening and bottle pa-
rameters influencing the rate of change of temperature in
the system when considering the lift-off, and bottle geome-
try and material when considering the sound, respectively,
have been investigated and modelled. Subject of further re-
search may exemplary be the predict the precise motion of
the coin, such as the angle of lift in dependency of coin mass
and temperature and other aspects of the precise motion of
the coin. Further investigation would also have to be done
into the influence of coin surface texture and other factors
possibly influencing the required pressure for a lift-off. Very
interesting would also be to investigate the proposed limita-
tion to the lift-off-model by the lift-off-pressure discrepancy
that could be explained by heavier coins.
As always, research is not done alone but in a team. I have
had the honour of presenting the findings above at the IYPT
2018 in Beijing, China, prior to which I have enjoyed tremen-
dous support from the tutors of SYPT: Thank you, Mrs. Em-
ilie Hertig, Mr. Daniel Keller, Mr. Eric Schertenleib. My
gratitude furthermore goes to my teammates of the IYPT-
2018-team of Switzerland. Lastly, I would like to thank Mr.
Reinhard Weiss of Gymnasium Kirschgarten for providing
help, support and motivation.
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